
LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

LSE Week Crackme: Making-of

Pierre Bourdon

delroth@lse.epita.fr
http://lse.epita.fr

July 20, 2012

http://lse.epita.fr

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Plan

...1 Introduction

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Crackme?

Security and reverse engineering challenge
You have an executable file and you need to crack it
Patch, retrieve key, keygen, ...
Done last year at LSE Week 2011
Tried again this year with an harder challenge

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

Plan

...2 Making-of
Packing
Payload

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

Goals

Last year the crackme was fully hand-written in x86
assembly
This year I wanted to have an automated obfuscation
and anti-debugging framework which did not
required writing any assembly code
I also had a few techniques I wanted to use in a "real"
project

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

Packing layer 1

Packing == storing a binary inside another binary in
order to hide the code before it is executed
You can’t see packed code with hexedit, objdump or
IDA
The first layer uses a modified version of UPX
No comment strings or UPX identifiers were kept
Mostly obfuscation, really easy to dump

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

Packing layer 2

The payload has a second layer of packing
Custom, written in C
Runs the packed code and wakes up on SIGSEGV to
map the required memory pages
Memory pages are stored encrypted and scrambled
in the packed file to avoid simply reading it
A lot harder to dump than the first payload: only
loaded on demand, lots of signals that interrupt
gdb, ...

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

Payload

Written in C
Asks the user to enter a password
Computes a reversible result from this password and
checks if it is equal to the one built in the compiled
payload
The reversible result is basically rotations and XOR
operations on the 4 parts of the 32 bytes password

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

Toolchain

Wouldn’t be fun if you could simply read the
compiled assembly code...
Obfuscation!
C compiled to QVM using the Quake3 C compiler
QVM compiled to x86_64 using a custom Python
script
Assembly is then shuffled, dead code is inserted,
control flow obfuscation, on demand code
decryption, etc.
5K of C code -> 620K of assembly -> 121K of
compiled code

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of
Packing

Payload

How to break it

Conclusion

.

QVM assembly

For more fun, QVM assembly is stack based
x86_64 is register based
All instructions operate on memory, registers are
only used to keep track of the stack pointer
You can use all the registers you want for dead code!
Also, stack based code is horrible to reverse (tools
just aren’t good enough)

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Plan

...3 How to break it

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Packing layer 1

Unpacking UPX is very easy
Find the jump to the OEP and dump memory
Then reconstruct the binary if needed (UPX keeps
the full ELF!)

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Packing layer 2

Hook in the SIGSEGV handler
Dump the code pages when they are mapped in
memory
Another solution: reverse the packer (not very hard)

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Defeating the payload obfuscation

Tracing!
Eliminate useless control flow instructions that way
Then reverse the VM instruction set and find out
how it matches to x86_64
Idea: could machine learning be used to detect
pattern in traces and defeat VM based obfuscation?

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Plan

...4 Conclusion

LSE Week
Crackme:
Making-of

Pierre Bourdon

Introduction

Making-of

How to break it

Conclusion

.

Questions?

@delroth_

delroth@lse.epita.fr

	Introduction
	Making-of
	Packing
	Payload

	How to break it
	Conclusion

