S

LSE Week
Crackme:
Making-of

Introduction

LSE Week Crackme: Making-of Making-of

How to break it

Conclusion

Pierre Bourdon

delroth@Ise.epita.fr
http://lse.epita.fr

July 20, 2012



http://lse.epita.fr

Plan

Introduction

Making-of

. How to break it
@ Introduction -

Conclusion




Crackme?

@ Security and reverse engineering challenge

@ You have an executable file and you need to crack it
@ Patch, retrieve key, keygen, ...

@ Done last year at LSE Week 2011

@ Tried again this year with an harder challenge

S -

LSE Week
Crackme:
Making-of

Introduction
Making-of
How to break it

Conclusion




Plan

© Making-of
@ Packing
@ Payload

S

LSE Week
Crackme:
Making-of

Introduction

Making-of

|
How to break it

Conclusion




Goals

@ Last year the crackme was fully hand-written in x86
assembly

@ This year I wanted to have an automated obfuscation
and anti-debugging framework which did not
required writing any assembly code

@ I also had a few techniques I wanted to use in a "real"
project

S -

LSE Week
Crackme:
Making-of

Introduction

Making-of

How to break it

Conclusion




Packing layer 1

Packing == storing a binary inside another binary in
order to hide the code before it is executed

You can’t see packed code with hexedit, objdump or
IDA

The first layer uses a modified version of UPX
No comment strings or UPX identifiers were kept

Mostly obfuscation, really easy to dump

S -

LSE Week
Crackme:
Making-of

Introduction

How to break it

Conclusion




Packing layer 2

@ The payload has a second layer of packing
@ Custom, written in C

@ Runs the packed code and wakes up on SIGSEGV to
map the required memory pages

@ Memory pages are stored encrypted and scrambled
in the packed file to avoid simply reading it

@ A lot harder to dump than the first payload: only

loaded on demand, lots of signals that interrupt
gdb, ...

S -

LSE Week
Crackme:
Making-of

Introduction

How to break it

Conclusion




Payload

@ Written in C
@ Asks the user to enter a password

e Computes a reversible result from this password and
checks if it is equal to the one built in the compiled
payload

@ The reversible result is basically rotations and XOR
operations on the 4 parts of the 32 bytes password

S -

LSE Week
Crackme:
Making-of

Introduction

Payload
How to break it

Conclusion




Toolchain

@ Wouldn't be fun if you could simply read the
compiled assembly code...

@ Obfuscation!

@ C compiled to QVM using the Quake3 C compiler

@ QVM compiled to x86_64 using a custom Python
script

@ Assembly is then shuffled, dead code is inserted,

control flow obfuscation, on demand code
decryption, etc.

@ 5K of C code -> 620K of assembly -> 121K of
compiled code

S -

LSE Week
Crackme:
Making-of

Introduction

How to break it

Conclusion




QVM assembly

@ For more fun, QVM assembly is stack based
@ x86_64 is register based

o All instructions operate on memory, registers are
only used to keep track of the stack pointer

@ You can use all the registers you want for dead code!

@ Also, stack based code is horrible to reverse (tools
just aren’t good enough)

S -

LSE Week
Crackme:
Making-of

Introduction

Payload
How to break it

Conclusion




Plan

Introduction

Making-of

. How to break it
© How to break it S

Conclusion




Packing layer 1

e Unpacking UPX is very easy
@ Find the jump to the OEP and dump memory

@ Then reconstruct the binary if needed (UPX keeps
the full ELF!)

S -

LSE Week
Crackme:
Making-of

Introduction
Making-of
How to break it

Conclusion




Packing layer 2

@ Hook in the SIGSEGV handler

@ Dump the code pages when they are mapped in
memory

@ Another solution: reverse the packer (not very hard)

S -

LSE Week
Crackme:
Making-of

Introduction
Making-of
How to break it

Conclusion




Defeating the payload obfuscation

@ Tracing!
e Eliminate useless control flow instructions that way

@ Then reverse the VM instruction set and find out
how it matches to x86_64

@ Idea: could machine learning be used to detect
pattern in traces and defeat VM based obfuscation?

S -

LSE Week
Crackme:
Making-of

Introduction
Making-of
How to break it

Conclusion




Plan

@ Conclusion

S

LSE Week
Crackme:
Making-of

Introduction
Making-of
How to break it

Conclusion




Questions?

@ @delroth_
@ delroth@lse.epita.fr

S

LSE Week
Crackme:
Making-of

Introduction
Making-of
How to break it

Conclusion




	Introduction
	Making-of
	Packing
	Payload

	How to break it
	Conclusion

