
Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Reverse Engineering DSP Code

Pierre Bourdon

delroth@lse.epita.fr
http://lse.epita.fr

February 12, 2013

http://lse.epita.fr

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Context

Core developer of the Dolphin Emulator
(GameCube/Wii)
Recently working mainly on sound processing
emulation
Had to understand how it worked and reverse
engineer the code running on it to reimplement it

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

What is a DSP?

Digital Signal Processor
Highly specialized CPUs with several ways to make
signal processing fast
Applications: sound mixing, sound effects
processing, signal demodulation, etc.

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Sound processing

Mixing sounds together: s = a + b
Setting a volume: s = v × i (0 <= v <= 1)
You can only mix together sounds at the same
sample rate, so resampling might be needed (linear,
cubic, FIR)
Sound delaying to simulate precise 3D positioning
Filters: LPF, FIR, etc.

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Tricks

Unless you need to cover a large range of values,
floating point numbers are bad compared to fixed
point numbers
Sound samples are in [−1.0, 1.0]
Volume is in [0.0, 1.0]
Each sound sample can be represented as a 16 bit
number in [−32768, 32767]
Volume can be represented as a value in [0, 32767]
Big optimization: ALU computations are a lot faster
than FPU
Need to be careful with overflows in intermediate
computations

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Communication with other components

The DSP also needs to communicate with several
external components: CPU, RAM, hardware
decoder, ...
Often has interrupts and in/out ports support to get
events from the CPU
Data from RAM is fetched and written using DMA to
an internal, smaller RAM

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Specs

Custom Macronix DSP design
Runs at 81MHz (fast!)
Hardware 32 bit multiplier with overflow handling
4K IRAM, 4K DRAM
4K IROM, 8K DROM
DMA access to the GameCube RAM and ARAM
Hardware PCM8, PCM16 and ADPCM decoding
from ARAM

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Registers

4 Address Registers: $AR0, $AR1, $AR2, $AR3
4 Index Registers: $IX0, $IX1, $IX2, $IX3
4 Wrapping Registers: $WR0, $WR1, $WR2, $WR3
2 32 bit "general" registers: $AX0, $AX1
2 40 bit accumulators: $ACC0, $ACC1
1 40 bit multiplication result register: $PROD

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Subregisters

$AX0.H, $AX0.L (16 bit)
$ACC0.H (8 bit), $ACC0.M, $ACC0.L (16 bit)
Access to $ACC0.H can be either zero-extended or
sign-extended

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

More peculiarities

16 bit bytes: addresses index 16 bit values
Instructions can be either 16 or 32 bits long (usually
with a 16 bit immediate)
Some instructions can be merged with an "extended
operation" to perform 2 operations at once
Strange control flow instructions using an internal
loop register stack: LOOP, BLOOP, IFC, ...

CLR $ACC0 // ACC0 = 0;
LOOP $ACC1.M // while (ACC1.M--)
SRRI @$AR0, $ACC0.M // *AR0++ = ACC0.M;

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Extended operations

Explicit parallelization of some operations that can
be performed at the same time
For example, "load from memory" and "multiply two
numbers"
Used a lot to make loops faster: load and store data
at the same time you perform operations
More than memory access: moving data from a
register to another, adding an index register to an
address register, etc.
Uses parts of the CPU not used by the main
instruction

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Example

opcode: bcf0
disasm:

MULAX’LD $AX0.H, $AX1.H, $ACC0 : $AX0.H, $AX1.H, @$AR0

pseudocode:
ACC0 += PROD;
PROD = AX0.H * AX1.H;
AX0.H = *AR0++;
AX1.H = *AR3++;

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Example 2

opcode: f2e7
disasm:

MADD’LDN $AX0.L, $AX0.H : $AX0.H, $AX1.L, @$AR3

pseudocode:
$PROD += AX0.L * AX0.H;
AX0.H = *AR0++;
AX1.H = *AR3;
AR3 += IX3;

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Tools

Only one disassembler available, no real static
analysis tool
Wrote an IDA plugin for the GCN DSP in November
2011
IDA handles surprisingly well most of the strange
features of this DSP (including 16 bit bytes)
Made it a lot easier to do cross-references, renaming
symbols, etc.
Writing IDA plugins will make you hate it, but it’s
worth the trouble in the end

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

IDA

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Confusing idioms

All of the code is written directly in assembly,
without respect for any kind of calling convention
Branching has an impact on speed, so loops are
sometimes manually unrolled
Wrapping registers used to implement circular
buffers
Automatic multiply by 2 for volume mixing

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Pipelining

Used to increase the throughput of a loop by taking
advantage of the explicit parallelization.

LRRI $AX0.H, @$AR3
LRRI $AX0.L, @$AR3
MULX $AX0.L, $AX1.L
MULXMV $AX0.H, $AX1.L, $ACC0
BLOOPI 0x30, 0x0655

ASR16’L $ACC0 : $AC1.M, @$AR1
ADDP’LN $ACC0 : $AC1.L, @$AR1
LRRI $AX0.H, @$AR3
ADD’L $ACC1, $ACC0 : $AX0.L, @$AR3
MULX’S $AX0.L, $AX1.L : @$AR1, $AC1.M
MULXMV’S $AX0.H, $AX1.L, $ACC0 : @$AR1, $AC1.L

Reverse
Engineering DSP

Code

Pierre Bourdon

Introduction

DSP

GameCube DSP

Analyzing GCN
DSP code

Conclusion

Questions?

@delroth_

http://dolphin-emu.org/

http://dolphin-emu.org/

	Introduction
	DSP
	GameCube DSP
	Analyzing GCN DSP code
	Conclusion

