Reverse Engineering DSP Code

Pierre Bourdon

delroth@Ise.epita.fr
http://lse.epita.fr

February 12, 2013

S

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

http://lse.epita.fr

Context

@ Core developer of the Dolphin Emulator
(GameCube/Wii)

@ Recently working mainly on sound processing
emulation

@ Had to understand how it worked and reverse
engineer the code running on it to reimplement it

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

What is a DSP?

e Digital Signal Processor

e Highly specialized CPUs with several ways to make
signal processing fast

e Applications: sound mixing, sound effects
processing, signal demodulation, etc.

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Sound processing

e Mixing sounds together: s =a + b

@ Setting a volume: s =v X1 (0 <=v<=1)

@ You can only mix together sounds at the same
sample rate, so resampling might be needed (linear,
cubic, FIR)

@ Sound delaying to simulate precise 3D positioning

o Filters: LPF FIR, etc.

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Tricks

@ Unless you need to cover a large range of values,
floating point numbers are bad compared to fixed
point numbers

@ Sound samples are in [-1.0,1.0]
@ Volume is in [0.0,1.0]

@ Each sound sample can be represented as a 16 bit
number in [-32768, 32767]

@ Volume can be represented as a value in [0, 32767]

@ Big optimization: ALU computations are a lot faster
than FPU

@ Need to be careful with overflows in intermediate
computations

S -

Reverse
Engineering DSP
Code

Pierre Bourdon

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Communication with other components

@ The DSP also needs to communicate with several
external components: CPU, RAM, hardware
decoder, ...

e Often has interrupts and in/out ports support to get
events from the CPU

e Data from RAM is fetched and written using DMA to
an internal, smaller RAM

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Specs

@ Custom Macronix DSP design

@ Runs at 81MHz (fast!)

e Hardware 32 bit multiplier with overflow handling
e 4KIRAM, 4K DRAM

e 4K IROM, 8K DROM

@ DMA access to the GameCube RAM and ARAM

e Hardware PCMS8, PCM16 and ADPCM decoding
from ARAM

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Registers

@ 4 Address Registers: $AR0, $AR1, $AR2, $AR3

@ 4 Index Registers: $IX0, $IX1, $IX2, $IX3

@ 4 Wrapping Registers: $WR0, $WR1, $WR2, $WR3
@ 2 32 bit "general" registers: $AX0, $AX1

@ 240 bit accumulators: $ACC0, $ACC1

@ 140 bit multiplication result register: $PROD

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Subregisters

o $AX0.H, $AX0.L (16 bit)
o $ACCO.H (8 bit), SACCO.M, $ACCO.L (16 bit)

@ Access to $ACCO0.H can be either zero-extended or
sign-extended

S

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

More peculiarities

@ 16 bit bytes: addresses index 16 bit values

@ Instructions can be either 16 or 32 bits long (usually
with a 16 bit immediate)

@ Some instructions can be merged with an "extended
operation" to perform 2 operations at once

@ Strange control flow instructions using an internal
loop register stack: LOOP, BLOOP, IFC, ...

CLR $ACCO // ACCO = O;
LOOP $ACC1.M // while (ACC1.M--)
SRRI @$ARO, $ACCO.M // *ARO++ = ACCO.M;

S -

Reverse
Engineering DSP
Code

Pierre Bourdon

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Extended operations

Explicit parallelization of some operations that can
be performed at the same time

For example, "load from memory" and "multiply two
numbers"

Used a lot to make loops faster: load and store data
at the same time you perform operations

More than memory access: moving data from a
register to another, adding an index register to an
address register, etc.

Uses parts of the CPU not used by the main
instruction

S -

Reverse
Engineering DSP
Code

Pierre Bourdon

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Example

opcode: bcf®
disasm:
MULAX’LD $AX0.H, $AX1.H, $ACCO® : $AX0.H, $AX1.H, @$ARO

pseudocode:
ACCO += PROD;
PROD = AX0.H * AX1.H;
AX0®.H = *ARO®++;
AX1.H = *AR3++;

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Example 2

opcode: f2e7
disasm:

MADD’LDN $AX®.L, $AX0.H :

pseudocode:
$PROD += AX0O.L * AX0.H;
AX0.H = *ARO®++;
AX1.H = *AR3;
AR3 += IX3;

$AX0.H, $AX1.L, @$AR3

S

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Tools

@ Only one disassembler available, no real static
analysis tool

@ Wrote an IDA plugin for the GCN DSP in November
2011

e IDA handles surprisingly well most of the strange
features of this DSP (including 16 bit bytes)

@ Made it a lot easier to do cross-references, renaming
symbols, etc.

@ Writing IDA plugins will make you hate it, but it’s
worth the trouble in the end

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Edit Jump Search View Dptions wine

dows Help

I 1

1DAYiewS 0@ Hex Viswb =N Functions vindow & X
loc_307: FLnciion name o
CIRTL GACCO : §AX0.H, B$ARD) 7] onoh_d_ond_voLm_|
LRI SACL.M, 0xB50 (7] emab_aunt_nowte
[BLo02 §AX0.H, loc_30F) emtrpiontre
Lﬁ 7] emdn 11
v [F] emdh_more
LFRT §ACO.H, BSARL (7] cmdhcbad
arp 'L SACCD, §ACCL : $AXL.L, BSARL ﬁ el Spiocess
R $ARZ, $ACO.N 7] emdh_auza
[emdr_aush
J (7] emdh_output
i m [7] emdr_stub_ob
[F] emdh_stub_0ic
loc_3oF: [7] emdr_stub_0a b
SER @5ARZ, §AXL.1] v
Eas ;ﬁég,”ﬁ? current update block pos e
SRR BSAR3, GARI A, Giaphoverview & X
LR SACD.M, pb_state
cup1s saco.M, 1
3z pb_panning
|

SACD.M, byte LOE4Z

SR byte_LOELC, §ACO.HM
1R §AR3, src_callback
CALLR SAR3

SETLE

2

CLR §aCC0

CLR §ACC1

IR §AC0.M, our_volume_delta

SACL.M, cur_volume

100- 003 (730, 285) ({644, 5297 (00000578

®0: idle [Bown Disk: 468

LR
[G0000ZFC: cudh process

S -

Reverse
Engineering DSP
Code

Pierre Bourdon

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusio

Confusing idioms

o All of the code is written directly in assembly,
without respect for any kind of calling convention

@ Branching has an impact on speed, so loops are
sometimes manually unrolled

@ Wrapping registers used to implement circular
buffers

@ Automatic multiply by 2 for volume mixing

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DSP code

Conclusion

Pipelining E

Reverse
Engineering DSP
Code

Used to increase the throughput of a loop by taking
advantage of the explicit parallelization.

Introduction

DSP

LRRI $AX0.H, @SAR3 GameCube DSP
LRRI $AX0.L, @SAR3 AR REeN
MULX $AX0.L, SAX1.L DSP code
MULXMV $AX0.H, $AX1.L, $ACCO Conelusion
BLOOPI 0x30, 0x0655

ASR16’L $ACCO : $ACL.M, @SAR1

ADDP’LN $ACCO : $ACI.L, @SAR1

LRRI $AX0.H, @$AR3

ADD’L $ACC1, $ACCO : $AX0.L, @S$AR3

MULX’S $AX0.L, $AX1.L : @$ARL, $ACL.M

MULXMV’S $AX0.H, $AX1.L, $ACCO : @$AR1, $AC1.L

Questions?

@ @delroth_
@ http://dolphin-emu.org/

S -

Reverse
Engineering DSP
Code

Introduction
DSP
GameCube DSP

Analyzing GCN
DS e

Conclusion

http://dolphin-emu.org/

	Introduction
	DSP
	GameCube DSP
	Analyzing GCN DSP code
	Conclusion

