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Context

@ Core developer of the Dolphin Emulator
(GameCube/Wii)

@ Recently working mainly on sound processing
emulation

@ Had to understand how it worked and reverse
engineer the code running on it to reimplement it
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What is a DSP?

e Digital Signal Processor

e Highly specialized CPUs with several ways to make
signal processing fast

e Applications: sound mixing, sound effects
processing, signal demodulation, etc.
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Sound processing

e Mixing sounds together: s =a + b

@ Setting a volume: s =v X1 (0 <=v<=1)

@ You can only mix together sounds at the same
sample rate, so resampling might be needed (linear,
cubic, FIR)

@ Sound delaying to simulate precise 3D positioning

o Filters: LPF FIR, etc.
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Tricks

@ Unless you need to cover a large range of values,
floating point numbers are bad compared to fixed
point numbers

@ Sound samples are in [-1.0,1.0]
@ Volume is in [0.0,1.0]

@ Each sound sample can be represented as a 16 bit
number in [-32768, 32767]

@ Volume can be represented as a value in [0, 32767]

@ Big optimization: ALU computations are a lot faster
than FPU

@ Need to be careful with overflows in intermediate
computations
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Communication with other components

@ The DSP also needs to communicate with several
external components: CPU, RAM, hardware
decoder, ...

e Often has interrupts and in/out ports support to get
events from the CPU

e Data from RAM is fetched and written using DMA to
an internal, smaller RAM
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Specs

@ Custom Macronix DSP design

@ Runs at 81MHz (fast!)

e Hardware 32 bit multiplier with overflow handling
e 4KIRAM, 4K DRAM

e 4K IROM, 8K DROM

@ DMA access to the GameCube RAM and ARAM

e Hardware PCMS8, PCM16 and ADPCM decoding
from ARAM
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Registers

@ 4 Address Registers: $AR0, $AR1, $AR2, $AR3

@ 4 Index Registers: $IX0, $IX1, $IX2, $IX3

@ 4 Wrapping Registers: $WR0, $WR1, $WR2, $WR3
@ 2 32 bit "general" registers: $AX0, $AX1

@ 240 bit accumulators: $ACC0, $ACC1

@ 140 bit multiplication result register: $PROD
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Subregisters

o $AX0.H, $AX0.L (16 bit)
o $ACCO.H (8 bit), SACCO.M, $ACCO.L (16 bit)

@ Access to $ACCO0.H can be either zero-extended or
sign-extended
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More peculiarities

@ 16 bit bytes: addresses index 16 bit values

@ Instructions can be either 16 or 32 bits long (usually
with a 16 bit immediate)

@ Some instructions can be merged with an "extended
operation" to perform 2 operations at once

@ Strange control flow instructions using an internal
loop register stack: LOOP, BLOOP, IFC, ...

CLR $ACCO // ACCO = O;
LOOP $ACC1.M // while (ACC1.M--)
SRRI @$ARO, $ACCO.M // *ARO++ = ACCO.M;
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Extended operations

Explicit parallelization of some operations that can
be performed at the same time

For example, "load from memory" and "multiply two
numbers"

Used a lot to make loops faster: load and store data
at the same time you perform operations

More than memory access: moving data from a
register to another, adding an index register to an
address register, etc.

Uses parts of the CPU not used by the main
instruction
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Example

opcode: bcf®
disasm:
MULAX’LD $AX0.H, $AX1.H, $ACCO® : $AX0.H, $AX1.H, @$ARO

pseudocode:
ACCO += PROD;
PROD = AX0.H * AX1.H;
AX0®.H = *ARO®++;
AX1.H = *AR3++;
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Example 2

opcode: f2e7
disasm:

MADD’LDN $AX®.L, $AX0.H :

pseudocode:
$PROD += AX0O.L * AX0.H;
AX0.H = *ARO®++;
AX1.H = *AR3;
AR3 += IX3;

$AX0.H, $AX1.L, @$AR3
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Tools

@ Only one disassembler available, no real static
analysis tool

@ Wrote an IDA plugin for the GCN DSP in November
2011

e IDA handles surprisingly well most of the strange
features of this DSP (including 16 bit bytes)

@ Made it a lot easier to do cross-references, renaming
symbols, etc.

@ Writing IDA plugins will make you hate it, but it’s
worth the trouble in the end
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Confusing idioms

o All of the code is written directly in assembly,
without respect for any kind of calling convention

@ Branching has an impact on speed, so loops are
sometimes manually unrolled

@ Wrapping registers used to implement circular
buffers

@ Automatic multiply by 2 for volume mixing
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Pipelining E

Reverse
Engineering DSP
Code

Used to increase the throughput of a loop by taking
advantage of the explicit parallelization.

Introduction

DSP

LRRI $AX0.H, @SAR3 GameCube DSP
LRRI $AX0.L, @SAR3 AR REeN
MULX $AX0.L, SAX1.L DSP code
MULXMV $AX0.H, $AX1.L, $ACCO Conelusion
BLOOPI 0x30, 0x0655

ASR16’L $ACCO : $ACL.M, @SAR1

ADDP’LN $ACCO : $ACI.L, @SAR1

LRRI $AX0.H, @$AR3

ADD’L $ACC1, $ACCO : $AX0.L, @S$AR3

MULX’S $AX0.L, $AX1.L : @$ARL, $ACL.M

MULXMV’S $AX0.H, $AX1.L, $ACCO : @$AR1, $AC1.L




Questions?

@ @delroth_
@ http://dolphin-emu.org/
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