Using SAT solvers for security related
problems

Pierre Bourdon

delroth@Ise.epita.fr
http://lse.epita.fr

February 8, 2013

S

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

http://lse.epita.fr

Quick example E

probléms

Introduction

@ You are trying to analyze a program to understand
how it encrypts message and how to decrypt these —
messages construction

SAT

Pysolver

@ The program contains only the encryption algorithm,
no decryption code

Conclusion

@ You possess an encrypted message and the
encryption key

e How to decrypt that message?

Quick Example

Encrypts dwl and dw2 (32 bits) with the constant key 0x63737265
def encrypt(dwl, dw2):
sum = O
for i in range(32):
dwl += (sum + 0x63737265) *» (dw2 + ((dw2 << 4) * (dw2 >> 5)))

sum -= 0x61C88647
dw2 += (sum + 0x63737265) *» (dwl + ((dwl << 4) * (dwl >> 5)))

return dwl, dw2

S

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
ruction

Conclusion

Quick Example

@ You might not recognize the algorithm at first

@ Inverting this encryption algorithm to get the
decryption algorithm is not trivial

@ Let’s use some magic! PySolver to the rescue

S -

probléms

Introduction
SAT

Formula
construction

Pysolver

Conclusion

Quick Example

problem = pysolver.Problem()
dwl = dwl_in = pysolver.Int(problem, 32)
dw2 = dw2_in = pysolver.Int(problem, 32)

dwl, dw2 = encrypt(dwl, dw2)

dwl.must_be(0x131laflbe)
dw2 .must_be(0x4bb34049)

problem.solve()
print (hex(dwl_in.model), hex(dw2_in.model))
Prints 0x615f7a6be, 0x645f6572

S

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
ruction

Pysolver

Conclusion

Boolean Satisfiability Problem

Finding a set of values for boolean variables that satisfy a
formula.

SAT((a V b) A (ma V b)) = {—a, b}

SAT(a A —~a) = UNSAT

S

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

Hard to solve

@ NP-complete problem: no polynomial algorithm
exists to solve SAT

@ Lots of applications in constraint solving

@ People wrote programs called SAT solvers to find
solution to the SAT problem

@ Very optimized, "fast enough" for most cases but
some formulas need a very long time to solve or are
reported as false negatives

@ No false positives

S -

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

Applications to security

@ A bitis a boolean variable, an integer is a set of bits

@ Most operations on integers can be represented as a
logic formula operating on the bits

@ Write a big formula representing your encryption
function, add clauses to "force" the output to some
values, use SAT to find satisfying input values

@ Also some applications in static analysis (finding
input values which will take a certain code path, etc.)

S -

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

DIMACS and CNF

@ SAT solvers use a common input format: DIMACS
e DIMACS represents a CNF boolean formula
@ Conjunctive Normal Form, product of boolean sums

@ Variables are represented by a simple integer

@V =b)A(—aVvbV-c)

S -

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

Forcing an output value

@ Let’s start with a simple function that checks if a
number is equal to a constant

@ The formula must be satisfied if and only if each
input bit has the same value as our constant

ebol=b
ebe0=-b

e Example: we want to check if a 4 bits number is
equal to 11

@ bg A=by Aby ADb3

S -

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

AND between two values E

problems

Introduction
SAT

Formula

@ AND between two bits, repeated for every bit in the construction
numbers Pysolver

® (; {—1 a; A bl Conclusion
° = (ai \4 _‘Ci) A (bz \Y —|C1’) A (Ci V —a; V _'bi)

ADD between two values

@ A bit more complex: we can’t just ADD two bits
together without keeping a carry

e We'll do it exactly like it’s done in circuit design:
chained 1 bit adders

@ A1 bit adder has three inputs: 4;, b;, ¢c; and two
outputs: 7, Ciy1

e Hard to represent as CNF clauses "manually"”, we can

use Sage to convert any boolean formula to
(potentially unoptimized) CNF

S -

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

Easy CNF generation with Pysolver

@ Python library to easily generate CNF from "natural
code

o Interfaces with CryptoMiniSAT, a fast and efficient
SAT solver

@ About 200 lines of Python, improving when I need
new features

@ http://code.delroth.net/pysolver

S -

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
construction

Pysolver

Conclusion

http://code.delroth.net/pysolver

TODO E

probléms

Introduction
SAT
@ Variable shifts: implement a simple barrel shifter Formula

construction

@ Take more advantage of CryptoMiniSAT features Pysolver
(XOR clauses) Conclusion

o Implement mappings: optimize with a Karnaugh
map to minimize the number of clauses

Questions?

@ @delroth_
@ http://code.delroth.net/pysolver

S

Using SAT solvers
for security related
problems

Introduction
SAT

Formula
ruction

Pysolver

Conclusion

http://code.delroth.net/pysolver

	Introduction
	SAT
	Formula construction
	Pysolver
	Conclusion

