

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

Conclusion

Using SAT solvers for security related problems

Pierre Bourdon

delroth@lse.epita.fr
http://lse.epita.fr

February 8, 2013

- You are trying to analyze a program to understand how it encrypts message and how to decrypt these messages
- The program contains only the encryption algorithm, no decryption code
- You possess an encrypted message and the encryption key
- How to decrypt that message?

Pierre Bourdon

introduction

SAT

Formula construction

Pysolver

	Using SAT solvers for security related problems
	Pierre Bourdon
	Introduction
	SAT
	Formula construction
	Pysolver
)))	Conclusion

Encrypts dw1 and dw2 (32 bits) with the constant key 0x63737265
def encrypt(dw1, dw2):
 sum = 0
 for i in range(32):
 dw1 += (sum + 0x63737265) ^ (dw2 + ((dw2 << 4) ^ (dw2 >> 5)))
 sum -= 0x61C88647
 dw2 += (sum + 0x63737265) ^ (dw1 + ((dw1 << 4) ^ (dw1 >> 5)))
 return dw1, dw2

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

- You might not recognize the algorithm at first
- Inverting this encryption algorithm to get the decryption algorithm is not trivial
- Let's use some magic! PySolver to the rescue

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

Conclusion

problem = pysolver.Problem()
dw1 = dw1_in = pysolver.Int(problem, 32)
dw2 = dw2_in = pysolver.Int(problem, 32)

```
dw1, dw2 = encrypt(dw1, dw2)
```

```
dw1.must_be(0x131af1be)
dw2.must_be(0x4bb34049)
```

```
problem.solve()
print(hex(dw1_in.model), hex(dw2_in.model))
# Prints 0x615f7a6e, 0x645f6572
```


Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

Conclusion

Finding a set of values for boolean variables that satisfy a formula.

 $SAT((a \lor b) \land (\neg a \lor b)) = \{\neg a, b\}$

 $SAT(a \land \neg a) = UNSAT$

- NP-complete problem: no polynomial algorithm exists to solve SAT
- Lots of applications in constraint solving
- People wrote programs called SAT solvers to find solution to the SAT problem
- Very optimized, "fast enough" for most cases but some formulas need a very long time to solve or are reported as false negatives
- No false positives

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

- A bit is a boolean variable, an integer is a set of bits
- Most operations on integers can be represented as a logic formula operating on the bits
- Write a big formula representing your encryption function, add clauses to "force" the output to some values, use SAT to find satisfying input values
- Also some applications in static analysis (finding input values which will take a certain code path, etc.)

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

- SAT solvers use a common input format: DIMACS
- DIMACS represents a CNF boolean formula
- Conjunctive Normal Form, product of boolean sums
- Variables are represented by a simple integer

$$(a \lor \neg b) \land (\neg a \lor b \lor \neg c)$$

Pierre Bourdon

Introduction

SA

Formula construction

Pysolver

- Let's start with a simple function that checks if a number is equal to a constant
- The formula must be satisfied if and only if each input bit has the same value as our constant
- $b \Leftrightarrow 1 \equiv b$
- $b \Leftrightarrow 0 \equiv \neg b$
- Example: we want to check if a 4 bits number is equal to 11
- $b_0 \wedge \neg b_1 \wedge b_2 \wedge b_3$

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

Pierre Bourdon

Introduction

SA

Formula construction

Pysolver

- AND between two bits, repeated for every bit in the numbers
- $c_i \Leftrightarrow a_i \wedge b_i$

•
$$\equiv (a_i \lor \neg c_i) \land (b_i \lor \neg c_i) \land (c_i \lor \neg a_i \lor \neg b_i)$$

- A bit more complex: we can't just ADD two bits together without keeping a carry
- We'll do it exactly like it's done in circuit design: chained 1 bit adders
- A 1 bit adder has three inputs: *a_i*, *b_i*, *c_i* and two outputs: *r_i*, *c_{i+1}*
- Hard to represent as CNF clauses "manually", we can use Sage to convert any boolean formula to (potentially unoptimized) CNF

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

Easy CNF generation with Pysolver

- Python library to easily generate CNF from "natural" code
- Interfaces with CryptoMiniSAT, a fast and efficient SAT solver
- About 200 lines of Python, improving when I need new features
- http://code.delroth.net/pysolver

Using SAT solvers for security related problems

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

- Variable shifts: implement a simple barrel shifter
- Take more advantage of CryptoMiniSAT features (XOR clauses)
- Implement mappings: optimize with a Karnaugh map to minimize the number of clauses

Pierre Bourdon

Introduction

SAT

Formula construction

Pysolver

- @delroth_
- http://code.delroth.net/pysolver