
Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Using SAT solvers for security related
problems

Pierre Bourdon

delroth@lse.epita.fr
http://lse.epita.fr

February 8, 2013

http://lse.epita.fr

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Quick example

You are trying to analyze a program to understand
how it encrypts message and how to decrypt these
messages
The program contains only the encryption algorithm,
no decryption code
You possess an encrypted message and the
encryption key
How to decrypt that message?

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Quick Example

Encrypts dw1 and dw2 (32 bits) with the constant key 0x63737265
def encrypt(dw1, dw2):

sum = 0
for i in range(32):

dw1 += (sum + 0x63737265) ^ (dw2 + ((dw2 << 4) ^ (dw2 >> 5)))
sum -= 0x61C88647
dw2 += (sum + 0x63737265) ^ (dw1 + ((dw1 << 4) ^ (dw1 >> 5)))

return dw1, dw2

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Quick Example

You might not recognize the algorithm at first
Inverting this encryption algorithm to get the
decryption algorithm is not trivial
Let’s use some magic! PySolver to the rescue

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Quick Example

problem = pysolver.Problem()
dw1 = dw1_in = pysolver.Int(problem, 32)
dw2 = dw2_in = pysolver.Int(problem, 32)

dw1, dw2 = encrypt(dw1, dw2)

dw1.must_be(0x131af1be)
dw2.must_be(0x4bb34049)

problem.solve()
print(hex(dw1_in.model), hex(dw2_in.model))
Prints 0x615f7a6e, 0x645f6572

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Boolean Satisfiability Problem

Finding a set of values for boolean variables that satisfy a
formula.

SAT((a ∨ b) ∧ (¬a ∨ b)) = {¬a, b}

SAT(a ∧ ¬a) = UNSAT

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Hard to solve

NP-complete problem: no polynomial algorithm
exists to solve SAT
Lots of applications in constraint solving
People wrote programs called SAT solvers to find
solution to the SAT problem
Very optimized, "fast enough" for most cases but
some formulas need a very long time to solve or are
reported as false negatives
No false positives

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Applications to security

A bit is a boolean variable, an integer is a set of bits
Most operations on integers can be represented as a
logic formula operating on the bits
Write a big formula representing your encryption
function, add clauses to "force" the output to some
values, use SAT to find satisfying input values
Also some applications in static analysis (finding
input values which will take a certain code path, etc.)

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

DIMACS and CNF

SAT solvers use a common input format: DIMACS
DIMACS represents a CNF boolean formula
Conjunctive Normal Form, product of boolean sums
Variables are represented by a simple integer

(a ∨ ¬b) ∧ (¬a ∨ b ∨ ¬c)

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Forcing an output value

Let’s start with a simple function that checks if a
number is equal to a constant
The formula must be satisfied if and only if each
input bit has the same value as our constant
b⇔ 1 ≡ b
b⇔ 0 ≡ ¬b
Example: we want to check if a 4 bits number is
equal to 11
b0 ∧ ¬b1 ∧ b2 ∧ b3

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

AND between two values

AND between two bits, repeated for every bit in the
numbers
ci ⇔ ai ∧ bi

≡ (ai ∨ ¬ci) ∧ (bi ∨ ¬ci) ∧ (ci ∨ ¬ai ∨ ¬bi)

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

ADD between two values

A bit more complex: we can’t just ADD two bits
together without keeping a carry
We’ll do it exactly like it’s done in circuit design:
chained 1 bit adders
A 1 bit adder has three inputs: ai, bi, ci and two
outputs: ri, ci+1

Hard to represent as CNF clauses "manually", we can
use Sage to convert any boolean formula to
(potentially unoptimized) CNF

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Easy CNF generation with Pysolver

Python library to easily generate CNF from "natural"
code
Interfaces with CryptoMiniSAT, a fast and efficient
SAT solver
About 200 lines of Python, improving when I need
new features
http://code.delroth.net/pysolver

http://code.delroth.net/pysolver

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

TODO

Variable shifts: implement a simple barrel shifter
Take more advantage of CryptoMiniSAT features
(XOR clauses)
Implement mappings: optimize with a Karnaugh
map to minimize the number of clauses

Using SAT solvers
for security related

problems

Pierre Bourdon

Introduction

SAT

Formula
construction

Pysolver

Conclusion

Questions?

@delroth_

http://code.delroth.net/pysolver

http://code.delroth.net/pysolver

	Introduction
	SAT
	Formula construction
	Pysolver
	Conclusion

