
Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Nintendo Wii Security Model

Pierre Bourdon

July 8, 2011



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Introduction

Sold more than any other home gaming consoles
More than 2 percent of all sold consoles have been
modded
That’s about 1 million consoles running code not
approved by Nintendo
Let’s see how this strange situation happened



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

1 Wii goals
A full-fledged game console
Allowing firmware upgrades
A better Gamecube



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

1 Wii goals
A full-fledged game console
Allowing firmware upgrades
A better Gamecube



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Modern consoles features

Internet connection (with WiFi)
Wireless controllers (Bluetooth)
USB support for accessories
Downloading games from an online store (Wii Shop)
SD card support to backup game saves
All in all, a lot of potential attack vectors



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Downloading programs

You can’t rely on physical disc protection to avoid
code execution
There is also a need for cryptography and program
signatures
Everything installed on the console needs to be
signed by Nintendo
This has been a solved problem for at least 20 years...
in theory



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

1 Wii goals
A full-fledged game console
Allowing firmware upgrades
A better Gamecube



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

What does the firmware provide?

The firmware is basically the operating system of the
console
Drivers, support for new features, etc. are provided
through upgrades
Examples: USB keyboards, Wii MotionPlus
But upgrades may break old code!



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Multiple OS versions

OS versions can be swapped at run time without
rebooting
Each Wii game specifies the OS version it was coded
for
Old OS versions are not removed on upgrades
... but then what about security upgrades?



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

1 Wii goals
A full-fledged game console
Allowing firmware upgrades
A better Gamecube



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

A better Gamecube

Complete backward compatibility with Gamecube
software
One of the main goals when engineering the Wii
Solves the egg-and-chicken problem with games at
console launch
Let’s see how this was achieved



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Hardware comparison

GC CPU: 486MHz PowerPC (codename Gekko)
Wii CPU: 729MHz PowerPC (codename Broadway)

GC GPU: ATI 162MHz "Flipper"
Wii GPU: ATI 243 MHz "Hollywood"

GC RAM: 24MB system RAM
Wii RAM: 24MB system RAM + 64MB external RAM

See a pattern here?



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals
A full-fledged game console

Allowing firmware
upgrades

A better Gamecube

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Why is this so important?

You can’t stay compatible with Gamecube games if
you introduce new security features for them
Nintendo chose to make a special "compatibility
mode" where the hardware is basically stripped
down
This works really well... but again, in theory!
This compatibility mode is the core of the first Wii
exploit which I’ll explain later



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

2 Wii Internals
Hidden CPU
Encrypted data
Broadway/Starlet interface
Booting and chain of trust



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Introduction

Everything you wanted to know about the Wii but
were afraid to ask
Most of the informations in this part are not officially
confirmed by Nintendo and is the result of research
from independant hackers
Thanks a lot to them for the great work!



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

2 Wii Internals
Hidden CPU
Encrypted data
Broadway/Starlet interface
Booting and chain of trust



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Where does the OS run?

IOS is meant to run even when a game is running
But the Wii "Broadway" CPU does not support
multi-tasking
Also, the IOS code does not look like PowerPC code
at all



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

It’s actually in here



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Hidden CPU

The Wii actually embeds 2 CPUs, one for the game
and one for the operating system
The operating system CPU, codenamed "Starlet", is
an ARM CPU
It communicates with the Broadway using a simple
ioctl-like API
Nintendo never acknowledged the existence of this
CPU to anyone



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Closer view



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

User space isolation

Most platforms isolate user mode from kernel mode
to avoid security problems
On a regular PC, ring 0 / ring 3
On a PS3 or an Xbox 360, the hypervisor which runs
the game code
The Wii program isolation is even better: two
separate CPUs which do not directly share memory



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

2 Wii Internals
Hidden CPU
Encrypted data
Broadway/Starlet interface
Booting and chain of trust



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Security coprocessors

The Wii has two security coprocessors which allows
for fast encryption and hashing
The first one: an AES coprocessor which encrypts
and decrypts data blocks with a 128 bit key
The second one: a SHA1 coprocessor which hashes
data blocks in very few cycles



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

The Wii NAND

The NAND is a 512MB non volatile memory which
stored any data needed by the console
This includes for example IOS versions, game data,
downloaded games, etc.
The encryption key is different on every console and
is burned into a chip at manufacturing time
This way you can’t access the data on the NAND
easily, you need to first get the keys



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

One Time Programmable chip

Also known as the OTP
It is embedded in the Starlet (which is in the
Hollywood chip...)
Contains all the keys and certificates of the console,
as well as some integrity hashes
Really hard to access without being able to send code
to the CPU



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Game saves

Game saves can be backuped on a SD card and then
restored
There must be some kind of integrity control to avoid
modified saves
Modified saves often imply exploits in games (we’ll
go into further details in the last part of this talk)
The Wii uses classic asymmetric cryptography (RSA,
PKI, etc.)



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Game saves signing

Each console has its own "save certificate" which is
used to sign game saves
This certificate is itself signed by Nintendo’s
certificate
This chain of trust allows every console to sign valid
game saves and to check if a game save was created
on a Wii or was altered
... at least until the certificate can be extracted out of
the OTP



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Software installation

Wii software is contained in packages called
"channels": News Channel, Photo Channel, Internet
Channel (Opera), ...
Each channel is signed and the signature is checked
at installation time
Strangely the signature is not checked at execution
time



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Disc-based games signing

Even games on DVD are completely signed to avoid
data modifications
Each byte on the DVD can be checked for integrity
and alteration
This is done through a data structure called a hash
tree which allows for hierarchical integrity checks



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

2 Wii Internals
Hidden CPU
Encrypted data
Broadway/Starlet interface
Booting and chain of trust



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

IOS primer

IOS is a "standard" microkernel programmed by
BroadOn for the Wii
It runs exclusively on the ARM CPU
Each driver is associated with a /dev/<node> device
file which is used to take commands or data
For example, /dev/sha to communicate with the
SHA1 coprocessor



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Broadway on the Starlet

There is a virtual process representing the code
running on the Broadway in IOS
All syscalls made by the PPC code to the Starlet are
seen as if they were made by the virtual process
This process UID depends on the game, so a game
can’t access another game data



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Syscalls from the Broadway

open("/dev/sha", MODE_WRITE) / close(fd)

read(fd, buffer, sizeof (buffer))

write(fd, buffer, sizeof (buffer))

seek(fd, where, whence)

ioctl(fd, IOCTL_ACTION, p, sizeof (p), q,
sizeof (q))

These can all be done synchronously or
asynchronously



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Everything is a file

From the Broadway, the only syscalls available are
those to manipulate files or device nodes
Some device nodes provide access to real devices,
some are just virtual devices exposing an API
through ioctl
For example: /dev/di is the disc drive interface
... and /dev/es is the authentication process which
changes the UID of our process to the game UID



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

2 Wii Internals
Hidden CPU
Encrypted data
Broadway/Starlet interface
Booting and chain of trust



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Booting process of the Wii

The first step is to load boot0 from the OTP and run
it on the Starlet
boot0 loads boot1 from the start of the NAND,
checks its SHA1 hash and runs it
boot1 loads boot2 from the NAND and checks the
signature before running it
boot2 starts up the Broadway and launches the
System Menu application



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals
Hidden CPU

Encrypted data

Broadway/Starlet interface

Booting and chain of trust

How the Wii got
owned

Writing your own
exploit

Conclusion

Implications

boot0 is fixed, SHA1(boot1) is in the OTP, so boot0
and boot1 can’t be upgraded with a firmware
upgrade
boot2 is the first piece of software that runs and can
be upgraded
If there is a bug in either boot0 or boot1, it’s game
over
Guess what happened... we’ll talk about this later



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Plan

3 How the Wii got owned
Finding the keys
Executing arbitrary code in Wii mode
Trucha signing bug
Bannerbomb
Post System Menu 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Who did this?

All the Wii reversing and modding efforts are due to
only one team
Team Twiizers: marcan, bushing, sven, segher,
crediar
Their more recent work include pwning the
PlayStation 3 :)



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

First steps

At the beginning, people did not even know about
the Starlet
The only way to execute code on a Wii was to use the
Gamecube emulation mode, which is really limited
because Starlet is disabled in that mode
The first step was to get the keys to decrypt the
NAND chip



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Plan

3 How the Wii got owned
Finding the keys
Executing arbitrary code in Wii mode
Trucha signing bug
Bannerbomb
Post System Menu 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Solution

Just try to find the keys in RAM when IOS uses them!
Easy to say, very hard to do



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Twiizer attack

When in Gamecube emulation, IOS is basically "shut
down" as it is not needed for anything
However, it forgets to clean its memory address
space before shutting down!
The keys are still there, we just need to find a way to
access them



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Twiizer attack, part 2

The Gamecube emulation mode can only access the
first 24MB of RAM
But you can take an electronic alimentation and
modify the data sent on the address bus to the RAM
Use that to access any address you want in the RAM!
This way, people could start analyzing what was on
the Wii NAND, including the operating system code
They can also sign fake save games and transfer
them on the console



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

How could Nintendo have avoided that?

When you’ve got a really secure memory to store
your keys, copying them in RAM is just dumb
Ideally the SHA1 and AES coprocessors should have
been able to read keys directly from the OTP
Not cleaning up keys after using them is a big
mistake



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Plan

3 How the Wii got owned
Finding the keys
Executing arbitrary code in Wii mode
Trucha signing bug
Bannerbomb
Post System Menu 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Attack vector

We can now craft game saves and modify them as we
want
Let’s try fuzzing that to see how games react!



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Tested game

"That’s the first game we actually tried to fuzz"



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Great success!

A too large horse name is strcpy-ed on a buffer on
the stack
The stack get smashed
We can control the return address and jump into a
shellcode
From there we can code things to load an executable
from a SD card



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Twilight Hack

Done once again by Team Twiizers
Working version of this exploit which loads a binary
from the SD card
They also released a framework to easily exploit
these kind of game loading errors
Really famous exploit because it is very simple
(buffer overflow with strcpy) and has huge
consequences!



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

What did Nintendo do wrong?

Definitely not enough testing and fuzzing on the
data parsers
No security features inserted by the compiler
(-fstack-protector)
No security features supported by the hardware (NX
stack for example)
They assumed that nobody would ever get their keys
so game saves could be trusted to be valid



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Plan

3 How the Wii got owned
Finding the keys
Executing arbitrary code in Wii mode
Trucha signing bug
Bannerbomb
Post System Menu 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

What is that about?

Biggest security fiasco ever on the Wii
Bug in the function checking an executable signature
before installing it or before executing boot2
Could be used to compromise boot2 and patch it
with some of our codes
We break the chain of trust and control whatever is
after boot2



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Bug explanation

char valid_sha1[20], computed_sha1[20];

load_valid_hash(valid_sha1);
compute_hash(computed_sha1);

if (!strncmp(valid_sha1, computed_sha1, 20))
return OK;

else
return NOT_OK;



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Bug explanation, part 2

strncmp stops comparing at the first null byte
With a lot of maths and RSA analysis, people finally
figured out how to craft valid signatures usign this
bug
For the record, memcmp should have been used



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Most importantly

This bug is present into boot1
boot1 cannot be upgraded as its hash is stored in the
OTP
Nintendo has no way to fix this bug!
All consoles manufactured until at least 2008 have
the Trucha bug



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

What should Nintendo have done?

More code reviews before releasing code to several
million Wii without being to upgrade it?
There is a lot of public domain signing code that
works and is not buggy that Nintendo could have
used instead of rewriting their own
Also, Nintendo were really slow about the boot1
update



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Plan

3 How the Wii got owned
Finding the keys
Executing arbitrary code in Wii mode
Trucha signing bug
Bannerbomb
Post System Menu 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

The end of the Twilight hack

After two failed tries to stop the Twilight hack, the
4.0 System Menu upgrade "fixed" the Twilight hack
exploit
Actually, they only check the saves you copy to your
Wii and don’t let you copy a badly formatted save
A new exploit was needed to get arbitrary code
execution on the Wii



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Enters Bannerbomb

System Menu 4.0 adds a new feature to the Wii: you
can save channels (aka. apps) on a SD card and
transfer them to your Wii
On the channel list, the channel has a little animation
defined by some kind of scripting language
Bannerbomb uses an heap overflow in this animation
parsing code to execute arbitrary code from the SD
card



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

A real game changer

Does not require any game! The bug is in the
standard software installed on every Wii
It’s really safe and easy to trigger
It is the most used exploit to install homebrew
applications on a Wii



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Nintendo’s response

First try to fix Bannerbomb in System Menu version
4.1, fail
Second try to fix Bannerbomb in System Menu
version 4.2, fail
Third and final fix was finally a success in System
Menu version 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Plan

3 How the Wii got owned
Finding the keys
Executing arbitrary code in Wii mode
Trucha signing bug
Bannerbomb
Post System Menu 4.3



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Current ways to get code execution

A lot of exploits which all require games
Indiana Pwns, in Lego Indiana Jones
Smash Stack, in Super Smash Bros Brawl
Eri HaKawai, in Tales of Symphonia 2
bathaxx, in Lego Batman
Return of the Jodi, in Lego Star Wars



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned
Finding the keys

Executing arbitrary code in
Wii mode

Trucha signing bug

Bannerbomb

Post System Menu 4.3

Writing your own
exploit

Conclusion

Nintendo response

Currently, none at all!
System Menu 4.3 is there since June 2010 and no
security update was released since then
Maybe Nintendo finally understand that with all the
foundations of their security pwned it’s almost
impossible to avoid exploits :)
Even if they fixed the current exploits, finding and
exploiting a new one is a matter of hours.



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Plan

4 Writing your own exploit
Finding an exploitable game
Using the Twiizers savezelda payload
In Tales of Symphonia 2



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

A bit of infos about me

I’m the author of the Eri HaKawai exploit
In this next section I’ll talk more precisely about how
I found the vulnerable code and how I exploited it to
make it a viable way to execute code on a 4.3 Wii



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Plan

4 Writing your own exploit
Finding an exploitable game
Using the Twiizers savezelda payload
In Tales of Symphonia 2



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Very few games are not exploitable

Try to avoid very recently released games
Take a game save and try very large string values to
make it overflow
You’d be lucky to find a game that does not crash :)



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

What is required for a working exploit

An overflow which will overwrite the return value of
the function without making the function crash
before returning
Enough space elsewhere in the game save to store
the shellcode (64KB)
An emulator to check the address where all those
things are loaded in memory



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Plan

4 Writing your own exploit
Finding an exploitable game
Using the Twiizers savezelda payload
In Tales of Symphonia 2



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Savezelda

Released with the Twilight Hack
A "generic" payload which should be placed in the
game save and be loaded by the buffer overflow
Loads a binary from the SD card



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Savezelda, part 2

To compile it correctly you need to know where it
will be placed in memory when executed
Choose an address from the game save memory
space
Finding the right address to load the code and jump
on it can be kind of difficult if you only have real
hardware



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

That’s all!

savezelda does everything
We did not even write PowerPC assembly :)
This payload is really a great asset for the Wii
modding community
The process of finding an exploitable game and
exploiting it takes probably less than 3 hours if you
know all the tools



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Plan

4 Writing your own exploit
Finding an exploitable game
Using the Twiizers savezelda payload
In Tales of Symphonia 2



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Where is the overflow

When you try to overflow the characters name, it is
correctly handled
When you do the same on monster characters, it
looks correctly handled
When you actually try to do actions on monster
characters with overflowed names, strange things
happen
Displaying the monster status smashes the stack



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Where to store the payload

There are large unused spaces in the save file filled
with zeros
The payload is about 30K and can be stored without
any problem



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

How to overflow the buffer

First approach: insert a lot of FF bytes with the
return address at the right offset
Crashes because local variables are corrupted
Second try: insert 01 bytes instead of FF bytes
Curiously this works better :)



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit
Finding an exploitable game

Using the Twiizers
savezelda payload

In Tales of Symphonia 2

Conclusion

Demo time :)



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Plan

5 Conclusion



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

A lot of good ideas

The Wii security model has a lot of very good ideas
But also a lot of very poor implementations of their
ideas
If you distribute a product to millions of people, your
weakest security link will definitely break some day



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

You can’t avoid hackers

So maybe you could embrace them?
The PS3 resisted for a long time because it offered an
almost native Linux support
If you give access to your hardware to hackers,
chances are they will take a lot more time to reverse
the rest of your security :)
Homebrew applications are not only dream: XBMC,
emulators, etc.



Nintendo Wii
Security Model

Pierre Bourdon

Wii goals

Wii Internals

How the Wii got
owned

Writing your own
exploit

Conclusion

Thanks for your time!

http://blog.delroth.net/

@delroth_ on Twitter

Questions?

http://blog.delroth.net/

	Wii goals
	A full-fledged game console
	Allowing firmware upgrades
	A better Gamecube

	Wii Internals
	Hidden CPU
	Encrypted data
	Broadway/Starlet interface
	Booting and chain of trust

	How the Wii got owned
	Finding the keys
	Executing arbitrary code in Wii mode
	Trucha signing bug
	Bannerbomb
	Post System Menu 4.3

	Writing your own exploit
	Finding an exploitable game
	Using the Twiizers savezelda payload
	In Tales of Symphonia 2

	Conclusion

