
Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript

ConclusionReversing a game script interpreter

Pierre Bourdon

July 8, 2011



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript

Conclusion

Introduction

Embedding a scripting language in software is really
common
Some people use well known languages (Lua,
Python)
Other people like to reinvent the world...



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript

Conclusion

Common usage of scripting languages

Games
GUI (Python, QML, Javascript)
Also used to obfuscate code



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Plan

1 Interpreter architecture 101
Bytecode
Main loop



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Plan

1 Interpreter architecture 101
Bytecode
Main loop



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Script file compilation

Scripts are usually made to be executed several times
Parsing a language and analyzing code is slow
It is a lot more efficient to compile the script to an
interpreter specific bytecode which is then run when
needed
Bytecodes are made to be compact, fast to load and
fast to execute



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Stack based bytecode

PUSH ma_fonction
PUSH 6
PUSH 7
MUL
CALL

Simple instructions, compact instruction set
A lot of instructions must be executed to perform
even simple tasks



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Register based bytecode

MOV 6, R1
MOV 7, R2
MUL R1, R2, R3
CALL ma_fonction, R3

Instructions are more complicated and take several
operands
Less instructions are needed



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Plan

1 Interpreter architecture 101
Bytecode
Main loop



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Main interpreter loop

Set PC = entry point offset
Execute the instruction at PC and increment PC
Repeat until an EXIT instruction is reached



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101
Bytecode

Main loop

Reversing CScript

Conclusion

Executing an instruction

Take the instruction opcode and lookup in a table the
code to execute for this opcode
There are more complex methods (direct threading,
indirect threading) which are faster but more
difficult to implement
Most of the interpreter code is in the instruction
handlers



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Plan

2 Reversing CScript
Finding the interpreter code
Dumping memory accesses
Instruction dispatcher
Categorizing data accesses



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

What is CScript?

From a Wii RPG: Tales of Symphonia 2
Used to control characters and animations during
cinematic scenes
Also used to script game events
Only used in this game as far as I know



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Plan

2 Reversing CScript
Finding the interpreter code
Dumping memory accesses
Instruction dispatcher
Categorizing data accesses



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Method

Find the address where the bytecode is in memory
Use it to find the code which access the bytecode in
memory
We can safely assume that it is the interpreter



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Finding the bytecode in memory

Run the program in a debugger
During the script execution, freeze the process
Dump the process memory
Search the bytecode in it using grep
-b/hexedit/whatever



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Finding code reading the bytecode

If you’ve got a correct debugger which can place
memory breakpoints, it’s easy
If you don’t, run the code in an emulator and modify
the memory load code to log the instruction offset



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Main interpreter loop

If we look carefully, we can see some blocks of code
without direct predecessors
This often means dispatch table, which in this case is
used to dispatch instructions



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Plan

2 Reversing CScript
Finding the interpreter code
Dumping memory accesses
Instruction dispatcher
Categorizing data accesses



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Why?

Understanding the code is hard
It’s easier to think about data than code
We know more or less what to expect in the
interpreter state



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

How?

If you are executing the interpreter through an
emulator, simply modify the emulator code
If you don’t but your debugger supports memory
breakpoints, use this
Dump the whole CPU state and the memory access
type (read/write, size)



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Example

{’type’:’r’, ’size’:4, ’addr’:’016E00F4’,
’val’: ’11000000’, ’pc’:’80091DBC’,
’r0’:’00000000’, ’r1’:’807AB378’, ...}

Log to an easily parsable format!



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Plan

2 Reversing CScript
Finding the interpreter code
Dumping memory accesses
Instruction dispatcher
Categorizing data accesses



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Finding the instruction dispatcher

Dispatching works by loading the opcode then doing
an indirect jump to an address in a table
If you’re a wizard, find the instruction loading the
opcode by reading the ASM
If you’re not, use the memory dump to find the most
executed instruction which reads the bytecode



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Deducing where PC is stored

To load the current opcode, we need to be able to
define "current"
The interpreter keeps the current offset in its state
The instruction dispatcher needs to read this offset to
load the opcode



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Example

lwz %r0, 0xC(%r15)
lwz %r4, 4(%r15)
mulli %r0, %r0, 0x1420
add %r5, %r15, %r0
lwz %r3, 0x142C(%r5)
lwzx %r17, %r4, %r3

r15 contains the interpreter state
The bytecode address is loaded into r4
The current PC is loaded into r3
The last instruction loads the opcode



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Somewhat useful application

We have the list of offsets where the executed
opcodes are
When there is a gap between two consecutive offsets
we can assume it’s a jump or a call
Let’s look at the script control flow!



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Script control flow

This is mostly useless but a nice proof of concept :)
Mostly useless



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Finding control flow opcodes

We can look the opcodes which trigger a control flow
change
JMP, CALL, RET
Conditional jump
That’s already 4 instructions easily reversed



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Plan

2 Reversing CScript
Finding the interpreter code
Dumping memory accesses
Instruction dispatcher
Categorizing data accesses



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Finding the stack

CALL and RET store addresses in the stack
This can be found in the memory access logs
If there is a stack it is likely to be used for things like
argument passing or local variables



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Finding the eventual registers

The easiest way is to search for an instruction doing
things like floating point division
There are very few chances to find that outside of
variables handling
We can then find from where are our variables loaded



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Categorizing data accesses

Through a lot of work you’ll begin how the
interpreter state is stored
With these infos you can make our data accesses log
more useful



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Example

{’type’:’r’, ’size’:4, ’addr’:’016E00F4’,
’val’: ’11000000’, ’pc’:’80091DBC’,
’r0’:’00000000’, ’r1’:’807AB378’, ...}

ReadInstr: 11000000 at pc=00007D40 (@ 80091DBC)



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Another example

{’type’:’r’, ’size’:4, ’addr’:’016E1964’,
’val’: ’00007D40’, ’pc’:’80091DB8’,
’r0’:’00000000’, ’r1’:’807AB378’, ...}

GetPC: 00007D40 at addr=016E1964 (@ 80091DB8)



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Reversing simple instructions from dumps

Some instructions of the bytecode are really simple to
reverse when you have a readable memory dump of their
execution

ReadInstr: 08000000 at pc=6E24
SetPC: 6E28
GetArg: 00006D80 at pc=6E28
SetPC: 6E2C
SetPC: 6D80



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript
Finding the interpreter code

Dumping memory accesses

Instruction dispatcher

Categorizing data accesses

Conclusion

Sadly...

There is not always enough informations to
understand an instruction from its memory accesses
dump
Instructions which are used a lot may can be
reversed by comparing the input values (regs, stack)
to their behavior
Reading the assembly is always needed to be sure to
not miss things!



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript

Conclusion

Plan

3 Conclusion



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript

Conclusion

Conclusion

Reversing an interpreter is hard and takes time
There is no generic method to do all the work
However there are methods to make analysis easier



Reversing a game
script interpreter

Pierre Bourdon

Interpreter
architecture 101

Reversing CScript

Conclusion

Questions?

http://blog.delroth.net/

http://code.delroth.net/cscript-interpreter/

@delroth_

http://blog.delroth.net/
http://code.delroth.net/cscript-interpreter/
@delroth_

	Interpreter architecture 101
	Bytecode
	Main loop

	Reversing CScript
	Finding the interpreter code
	Dumping memory accesses
	Instruction dispatcher
	Categorizing data accesses

	Conclusion

